A study of blow-ups in the Keller–Segel model of chemotaxis

نویسندگان

  • Ibrahim Fatkullin
  • I Fatkullin
چکیده

We study the Keller–Segel model of chemotaxis and develop a composite particle-grid numerical method with adaptive time stepping which allows us to resolve and propagate singular solutions. We compare the numerical findings (in two dimensions) with analytical predictions regarding formation and interaction of singularities obtained through analysis of the stochastic differential equations associated with the model. PACS numbers: 02.60.Nm, 02.70.Ns, 05.10.Gg, 87.10.Ed, 87.10.Mn, 87.17.Jj Mathematics Subject Classification: 35K58, 45G05, 65C35, 82C22, 82C31, 82C80, 92C17

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volume effects in the Keller-Segel model: energy estimates preventing blow-up

We obtain a priori estimates for the classical chemotaxis model of Patlak, Keller and Segel when a nonlinear diffusion or a nonlinear chemosensitivity is considered accounting for the finite size of the cells. We will show how entropy estimates give natural conditions on the nonlinearities implying the absence of blow-up for the solutions.

متن کامل

Blow up of solutions to generalized Keller–Segel model

The existence and nonexistence of global in time solutions is studied for a class of equations generalizing the chemotaxis model of Keller and Segel. These equations involve Lévy diffusion operators and general potential type nonlinear terms.

متن کامل

Model Hierarchies for Cell Aggregation by Chemotaxis

We present PDE (partial differential equation) model hierarchies for the chemotactically driven motion of biological cells. Starting from stochastic differential models we derive a kinetic formulation of cell motion coupled to diffusion equations for the chemoattractants. Also we derive a fluid dynamic (macroscopic) Keller-Segel type chemotaxis model by scaling limit procedures. We review rigor...

متن کامل

Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis.

In two space dimensions, the parabolic-parabolic Keller-Segel system shares many properties with the parabolic-elliptic Keller-Segel system. In particular, solutions globally exist in both cases as long as their mass is less than a critical threshold M(c). However, this threshold is not as clear in the parabolic-parabolic case as it is in the parabolic-elliptic case, in which solutions with mas...

متن کامل

Boundedness vs. blow-up in the Keller-Segel system

The fully parabolic Keller-Segel chemotaxis system { ut = ∆u−∇ · (u∇v), x ∈ Ω, t > 0, vt = ∆v − v + u, x ∈ Ω, t > 0, is considered under homogeneous Neumann boundary conditions in bounded domains Ω ⊂ R, n ≥ 1. We demonstrate rigorous analytical techniques which can be used to identify situations when solutions either remain bounded, or exhibit a blow-up phenomenon. In the latter case, which is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010